Courses | B.S. in Biochemistry
Below are some of the courses you’ll have an opportunity to take as a student in this program. Take a look at the list below to get an idea of the types of available courses. Also, be sure to review core curriculum requirements and the official program requirements in the Biola University catalog.
Major Courses
BIOS 111 | Fundamentals of Cellular and Molecular Biology |
Introductory course for majors emphasizing the principles of cellular and molecular biology, genetics, and development. Grade Mode: A. | |
BIOS 113 | Fundamentals of Cellular and Molecular Biology Laboratory |
This laboratory accompanies BIOS 111 and is divided between observational and experimental approaches, with emphasis on the collection and interpretation of quantitative data. Frequent lab discussion of relevant issues and literature will be included. Grade Mode: A. | |
BIOS 312 | Cell and Molecular Biology |
Discusses the molecular organization and function of cells and their organelles, with emphasis on chromosome structure, gene expression, membrane structure and function, energy conversion, and experimental methods used to study subcellular components. Grade Mode: A. | |
CHEM 105 | General Chemistry I |
Principles and theories of the structure and properties of matter including stoichiometry, atomic theory, the periodic table, chemical bonding, molecular structure, nomenclature, chemical reactions, states of matter, gas laws and solutions. Lecture/Lab Hours: Three hours lecture; three hours laboratory; one hour recitation, weekly. Notes: Approved for Core Curriculum Science credit. Grade Mode: A, N. | |
CHEM 106 | General Chemistry II |
Continuation of General Chemistry I. Subjects include chemical kinetics, equilibrium, thermodynamics, solubility, acidity, electrochemistry, coordination complexes and various special topics. Lecture/Lab Hours: Three hours lecture; three hours laboratory; one hour recitation, weekly. Notes: A minimum grade of a "C-" is required to subsequently register in CHEM 321 and 322 or CHEM 301 and CHEM 311. Grade Mode: A, N. | |
CHEM 301 | Organic Chemistry I |
The first semester of the traditional yearlong course in organic chemistry. Structure, properties and reactivity of carbon-containing compounds with emphasis on reaction mechanisms. An introduction to the major functional groups and the instrumental methods for structure determination: IR, NMR, and MS. Grade Mode: A. | |
CHEM 302 | Organic Chemistry II |
Continuation of Organic Chemistry I. Continued work with more complicated reactions and mechanisms. An introduction to computer-based drawing and searching tools. The last third of the course is devoted to the structure and properties of major biochemical substances. Grade Mode: A. | |
CHEM 311 | Laboratory in Organic Chemistry I |
Basic laboratory techniques for the synthesis, isolation, purification and analysis of organic compounds including the major chromatographic methods, TLC, GC, LC. Lecture/Lab Hours: Three hours laboratory weekly. Grade Mode: A. | |
CHEM 312 | Laboratory in Organic Chemistry II |
Continuation of the laboratory methods in organic chemistry including the major structural determination and analysis tools of NMR, IR, HPLC, UV/Vis. Lecture/Lab Hours: Three hours laboratory weekly. Grade Mode: A. | |
CHEM 350 | Analytical Chemistry |
Covers classical chemical methods of analysis such as titrimetry and gravimetry along with various instrumental methods including electrochemistry, spectroscopy and chromatography. Lecture/Lab Hours: Three hours lecture; six hours laboratory, weekly. Grade Mode: A, N. | |
CHEM 402 | Physical Chemistry I |
Molecular energetics: the thermodynamic principles underlying energy changes in chemical systems and governing chemical reactions. Energetics of solutions, electrochemical cells, phase changes, and chemical equilibria are discussed. Quantum mechanics is introduced, including solutions to the time-independent Schrodinger equation, multi-electron systems, and polyatomic molecules. Grade Mode: A. | |
CHEM 411 | Biochemistry I |
Structures and properties of biomolecular components of cells, including proteins, carbohydrates, lipids, nucleotides, nucleic acids, vitamins and coenzymes, kinetics and mechanism and regulation of enzyme action in biological systems. Notes: BIOS 111 and 113 are recommended. Grade Mode: A. | |
CHEM 412 | Biochemistry II |
Principles of metabolic processes; mathematical treatment of bioenergetics emphasizing major concepts and problem solving. Lecture/Lab Hours: Three hours lecture. Notes: BIOS 111 and 113 are recommended. Grade Mode: A. | |
CHEM 413 | Laboratory in General Biochemistry |
A laboratory course to accompany CHEM 411, CHEM 412 (BIOS 411, BIOS 412). The isolation, characterization and analysis of biomolecules including the use of biochemical instrumentation and methodology for work in protein structure, enzymology, metabolism and genetics. Lecture/Lab Hours: Six hours laboratory weekly. Notes: BIOS 111 and 113 are recommended. Grade Mode: A. | |
MATH 105 | Calculus I |
Limits, differentiation and integration of rational and trigonometric functions, with applications. Notes: Approved for Core Curriculum Math credit. Grade Mode: A. | |
PHSC 111 | Physics I |
A study of mechanics, heat and sound. Intended for non-Physical Science majors. Principles are treated quantitatively but without a calculus requirement. Lecture/Lab Hours: Three hours lecture, one hour recitation weekly. Notes: Approved for Core Curriculum Science credit. Grade Mode: A, N. | |
PHSC 112 | Physics II |
Continued from Physics I; includes electricity, magnetism, elementary circuits, optics, and modern physics. Lecture/Lab Hours: Three hours lecture, one hour recitation weekly. Grade Mode: A, N. |
Elective Courses
BIOS 112 | Fundamentals of Organismal Biology |
Introductory course for biological science majors emphasizing the principles of systematics and biodiversity, population genetics and origins theories, ecology, and anatomy and physiology. Notes: Approved for Core Curriculum Science credit. Grade Mode: A. | |
BIOS 114 | Fundamentals of Organismal Biology Laboratory |
This laboratory, which accompanies BIOS 114, will involve dissection as well as experimentation. A field project involving the La Mirada Creek is included. Notes: Approved for Core Curriculum Science credit. Grade Mode: A. | |
BIOS 281 | Physiology |
A study of the basic concepts of physiological regulation from the level of the cell to the integrated intact organism including neural, muscular, and neuro-endocrine regulatory systems. Laboratory includes human systems analysis and electrophysiology. Lecture/Lab Hours: Three hours lecture, one hour pre-lab, three hours laboratory. Grade Mode: A, N. | |
BIOS 282 | Microbiology |
A study of microbial organisms with emphasis on bacteria and viruses, including their morphology, physiology, metabolism and genetics; host parasite interactions; humoral and cell-mediated immunity. Laboratory practice in handling microorganisms, including identification and culture techniques. Lecture/Lab Hours: Three hours lecture, four hours laboratory. Grade Mode: A, N. | |
BIOS 311 | Neurobiology |
Discusses the embryology of the nervous system, the structure and function of the different cells of the nervous system and transmission by neurons. Emphasis on understanding cellular organization and neurophysiology of major subsystems of the vertebrate nervous system. Grade Mode: A. | |
BIOS 322 | Laboratory in Cell and Molecular Biology |
Practical application of traditional and current laboratory techniques used in research and industry, including microscopy, scanning electron microscopy, histology, chromosomal analysis, tissue cell culture, isolation and purification of DNA, RNA and proteins, PCR, proper documentation and protocols and other laboratory writing skills are emphasized. Lecture/Lab Hours: Six hours of laboratory, one hour discussion. Grade Mode: A. | |
BIOS 332 | Genetics |
Integrates principles of Mendelian and molecular genetics toward understanding structure and function of the gene. Emphasizes quantitative analysis of genetic data and explores current issues of genetic engineering from technical and ethical viewpoints. Lecture/Lab Hours: Three hours lecture, four hours lab. Grade Mode: A, N. | |
BIOS 382 | Vertebrate Physiology |
Discusses the mechanisms of integration and homeostasis at the cellular, organ and system levels. Muscular, neural, vascular, excretory, and endocrine interactions are studied. Variations between vertebrate groups are presented. Includes a major research project. Lecture/Lab Hours: Three hours lecture, four hours laboratory. Grade Mode: A, N. | |
BIOS 431 | Developmental Biology |
Analyzes the molecular, genetic and cellular mechanisms that control fertilization, the development of body form, cell specialization and differentiation as well as metamorphosis, maturation and aging. Laboratory emphasizes gametogenesis, fertilization, comparative embryology of vertebrates and invertebrates and directed experimental manipulation of embryos. Lecture/Lab Hours: Three hours lecture, four hours laboratory. Grade Mode: A, N. | |
BIOS 445 | Immunology |
A study of the structures and functions of the immune system, humoral and cell mediated immunity, and analysis of medically significant disorders of the immune system. Grade Mode: A. | |
CHEM 332 | Environmental Chemistry |
Quantitative introduction to the chemistry of the atmosphere and air pollution, energy and climate, toxic organic compounds, water pollution and purification, soil chemistry and waste disposal. Lecture/Lab Hours: Three hours lecture; three hours laboratory, weekly. Grade Mode: A, N. | |
CHEM 352 | Fundamentals of Material Science |
Introduction to the structure-property relationships of engineering and natural materials including metals, ceramics, polymers and composites. Examines the strength of materials, strengthening mechanisms, diffusion, phase transformations, heat treatment and microstructure control. Considers how materials are selected for design of a product. Grade Mode: A. | |
CHEM 360 | Inorganic Chemistry |
Covering the chemistry of the entire periodic table, the course begins with atomic theory and then introduces symmetry and group theory before looking in depth at chemical bonding and acid-base chemistry, the chemistry and properties of solids, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and nanomaterials. Grade Mode: A. | |
CHEM 405 | Physical Chemistry II |
Building upon the thermodynamic and quantum mechanical foundation of Physical Chemistry I, this course applies quantum mechanics to Hartree-Fock theory and electronic, vibrational, and nuclear spectroscopies. Quantum effects are used to explain the origins of bulk material properties, the behavior of ensembles of molecules, diffusion, kinetics, and complex reaction systems. Lecture/Lab Hours: Three hours lecture, three hours laboratory, weekly. Grade Mode: A, N. | |
CHEM 420 | Special Topics in Chemistry |
Subjects include such areas as the chemical literature, various instrumental methods, polymers, organometallics and industrial chemistry. Grade Mode: A. | |
CHEM 480 | Directed Research or Internship |
Research or industrial internship to provide practical experience in a field of the student's interest. Designed for students working on or off campus in a situation where directed research is possible. Notes: May be taken multiple times for a total of 6 credits. Grade Mode: A. | |
MATH 106 | Calculus II |
Differentiation and integration of logarithmic, exponential and inverse trigonometric functions; various methods of integration; infinite sequences and series; parametric equations, polar coordinates. Grade Mode: A. | |
MATH 318 | Biostatistics |
Prepares the student for biostatistical application essential to practice in evidence-based professions. Content includes: descriptive statistics; probability theory and rules; discrete and continuous probability distributions; sampling distributions; confidence intervals; hypothesis testing; experimental design; ANOVA; linear and multiple regression; contingency table analysis; non-parametrics; survival analysis; discussion of the use of statistics in journal articles. Notes: Approved for Core Curriculum Math credit. Credit given for only one of 210 and 318. Grade Mode: A. | |
PHSC 124 | Data Analysis and Presentation |
This course is intended for Chemistry, Physics and Engineering Department majors or anyone else interested in learning to develop their intuition for problem-solving using formal and informal techniques. Involves the use of MATLAB, Excel and other computer tools for data analysis. Grade Mode: A. | |
PHSC 234 | General Physics III: Waves, Optics and Modern Physics |
Wave theory, sound, geometric optics, interference and diffraction, relativity, wave properties of particles, and introduction to quantum physics. Lecture/Lab Hours: Three hours lecture; three hours laboratory, weekly. Notes: Primarily for Physical Science and Engineering Physics majors. The optics section may be taken for one credit (PHSC 450). Grade Mode: A, N. | |
PHSC 311 | Computer Techniques in Science and Engineering |
Use of computation tools using MATLAB and LabVIEW in chemistry, physics and engineering, digital signal analysis and instrument control. Grade Mode: A. | |
PHSC 321 | Circuits and Instrumentation I |
Introduction to circuit elements, network theorems, response, semiconductor devices, integrated circuits, and the operation and design of analog DC/AC circuits. Also introduces the fundamentals of Boolean logic and digital design. Laboratory work involves extensive construction and analysis of circuits, as well as introduction of soldering and assembly techniques. Lecture/Lab Hours: Three hours lecture; six hours laboratory, weekly. Grade Mode: A, N. | |
PHSC 450 | Special Topics in Physical Science |
Varying course content. Topics such as optics, special relativity, nuclear and biophysics will be offered. Grade Mode: A. |